The emitter-base junction of a transistor is forward biased whereas collector-base junction is reverse biased. If for a moment, we ignore the presence of emitter-base junction, then practically (Note 1) no current would flow in the collector circuit because of the reverse bias. However, if the emitter-base junction is also present, then forward bias on it causes the emitter current to flow. It is seen that this emitter current almost entirely flows in the collector circuit. Therefore, the current in the collector circuit depends upon the emitter current. If the emitter current is zero, then collector current is nearly zero. However, if the emitter current is 1mA, then collector current is also about 1mA. This is precisely what happens in a transistor. We shall now discuss this transistor action for npn & pnp transistors.
Working of npn transistor
The Below Fig shows the npn transistor with forward bias to emitter-base junction and reverse bias to collector-base junction. The forward bias causes the electrons in the n-type emitter to flow towards the base. This constitutes the emitter current IE. As these electrons flow through the p-type base, they tend to combine with holes. As the base is lightly doped and very thin, therefore, only a few electrons (less than 5%) combine with holes to constitute base (note 2) current IB. The remainder ( (Note 3) more than 95%) cross over into the collector region to constitute collector current IC. In this way, almost the entire emitter current flows in the collector circuit. It is clear that emitter current is the sum of collector and base currents i.e.
IE = IB + IC
Note:
Working of PNP transistor
The below Fig shows the basic connection of a pnp transistor. The forward bias causes the holes in the p-type emitter to flow towards the base. This constitutes the emitter current IE. As these holes cross into n-type base, they tend to combine with the electrons. As the base is lightly doped and very thin, therefore, only a few holes (less than 5%) combine with the electrons. The remainder (more than 95%) cross into the collector region to constitute collector current IC. In this way, almost the entire emitter current flows in the collector circuit. It may be noted that current conduction within pnp transistor is by holes. However, in the external connecting wires, the current is still by electrons.
Importance of transistor action
The input circuit (i.e. emitter-base junction) has low resistance because of forward bias whereas output circuit (i.e. collector-base junction) has high resistance due to reverse bias. As we have seen, the input emitter current almost entirely flows in the collector circuit. Therefore, a transistor transfers the input signal current from a low-resistance circuit to a high-resistance circuit. This is the key factor responsible for the amplifying capability of the transistor.
Token Ring At the start, a free Token is circulating on the ring, this is…
Two or more amplifiers can be connected in a cascaded arrangement with the output of…
A linear amplifier provides amplification of a signal without any distortion so that the output…
What is Rectifier? A rectifier is a device that simply converts alternating current (AC) into…
Types of Diodes: Small signal or Small current diode - These diodes assumes that the…
Ethernet Bus: This is a coax based Ethernet network where all machines are daisy chained…