This method of biasing is common in switching circuits. Figure shows a base-biased transistor. The analysis of this circuit for the linear region shows that it is directly dependent on βDC. Starting with Kirchhoff’s voltage law around the base circuit,

Q-Point Stability of Base Bias

Notice that Above Equation shows that IC is dependent on βDC. The disadvantage of this is that a variation in βDC causes IC and, as a result, VCE to change, thus changing the Q-point of the transistor. This makes the base bias circuit extremely beta-dependent and unpredictable.

Recall that βDC varies with temperature and collector current. In addition, there is a large spread of βDC values from one transistor to another of the same type due to manufacturing variations. For these reasons, base bias is rarely used in linear circuits but is discussed here so you will be familiar with it.

Bharadwaj

Recent Posts

Token Ring and Token Bus Working Animation

Token Ring At the start, a free Token is circulating on the ring, this is…

8 years ago

Capacitively Coupled Multistage Transistor Amplifier

Two or more amplifiers can be connected in a cascaded arrangement with the output of…

8 years ago

Transistor Amplifier Working Principle

A linear amplifier provides amplification of a signal without any distortion so that the output…

8 years ago

Bridge Rectifier Working Animation

What is Rectifier? A rectifier is a device that simply converts alternating current (AC) into…

8 years ago

Different Types of Diodes

Types of Diodes: Small signal or Small current diode - These diodes assumes that the…

8 years ago

Ethernet Bus Animation

Ethernet Bus: This is a coax based Ethernet network where all machines are daisy chained…

8 years ago