Transistor Emitter Bias


Emitter bias provides excellent bias stability in spite of changes in β or temperature. It uses both a positive and a negative supply voltage. To obtain a reasonable estimate of the key dc values in an emitter-biased circuit, analysis is quite easy. In an npn circuit, such as shown in Figure, the small base current causes the base voltage to be slightly below ground.

The emitter voltage is one diode drop less than this. The combination of this small drop across RB and VBE forces the emitter to be at approximately  -1v. Using this approximation, you can obtain the emitter current as

Emitter Current

VEE is entered as a negative value in this equation.

You can apply the approximation that IC = IE to calculate the collector voltage.


The approximation that VE = -1v is useful for troubleshooting because you won’t need to perform any detailed calculations. As in the case of voltage-divider bias, there is a more rigorous calculation for cases where you need a more exact result.

Emitter Bias

The approximation that VE = -1v and the neglect of βDC may not be accurate enough for design work or detailed analysis. In this case, Kirchhoff’s voltage law can be applied as follows to develop a more detailed formula for IE. Kirchhoff’s voltage law applied around the base-emitter circuit in Figure (a), which has been redrawn in part (b) for analysis, gives the following equation:

Transistor Emitter Bias

VEE + VRB + VBE + VRE = 0

Substituting, using Ohm’s law,


Emitter Bias Derivation


Engineering Tutorial Keywords:

  • emitter bias analysis
  • Emitter Bias calculations YouTube
  • emitter bias method
  • base bias open ground on the emitter
  • emmiter bias of the transister

No comments

You May Also Like :

Peak Inverse Voltage of Center Tapped Transformer Rectifier

Peak Inverse Voltage of Center Tap Rectifier

Peak Inverse Voltage Each diode in the full-wave rectifier is alternately forward-biased and then reverse-biased. The maximum reverse voltage that each diode must withstand is the peak ...