Full Wave Bridge Rectifier Peak Inverse Voltage

Peak Inverse Voltage Let’s assume that D1 and D2 are forward-biased and examine the reverse voltage across D3 and D4. Visualizing D1 and D2 as shorts (ideal model), as in Figure (a), you can see that D3 and D4 have a peak inverse voltage equal to the peak secondary voltage. Since the output voltage is ideally equal to the secondary voltage,

PIV = Vp(out)

If the diode drops of the forward-biased diodes are included as shown in Figure (b), the peak inverse voltage across each reverse-biased diode in terms of Vp(out) is

The PIV rating of the bridge diodes is less than that required for the center-tapped configuration. If the diode drop is neglected, the bridge rectifier requires diodes with half the PIV rating of those in a center-tapped rectifier for the same output voltage.

Fig : Peak inverse voltages across diodes D3 and D4 in a bridge rectifier during the positive half-cycle of the secondary voltage.

Bharadwaj

Recent Posts

Token Ring and Token Bus Working Animation

Token Ring At the start, a free Token is circulating on the ring, this is…

8 years ago

Capacitively Coupled Multistage Transistor Amplifier

Two or more amplifiers can be connected in a cascaded arrangement with the output of…

8 years ago

Transistor Amplifier Working Principle

A linear amplifier provides amplification of a signal without any distortion so that the output…

8 years ago

Bridge Rectifier Working Animation

What is Rectifier? A rectifier is a device that simply converts alternating current (AC) into…

8 years ago

Different Types of Diodes

Types of Diodes: Small signal or Small current diode - These diodes assumes that the…

8 years ago

Ethernet Bus Animation

Ethernet Bus: This is a coax based Ethernet network where all machines are daisy chained…

8 years ago