Inrush Currents in Transformers – Causes
When a transformer is energized after a short interruption, the transformer may draw high inrush currents from the system due to core magnetization being out of synch with the voltage. The inrush currents will be as high as short circuit currents in the transformer (almost 20 to 40 times the rated normal full load current of transformer). Inrush currents may cause fuse, relays or re-closers to falsely operate. It may also falsely operate the faulted circuit indicators or cause sectionalizers to mis-operate.
When the transformer is switched in, if the system voltage and transformer core magnetization are not in synch, a magnetic transient may occurs. This transient may drive the core into saturation and drives a large amount current into the transformer causing transformer core to damage
Factors Significantly Impact Inrush Currents in Transformer:
Energizing a transformer can cause the nearby transformer to also draw inrush currents. The inrush currents into the switched transformer has a significant dc component that can cause the voltage drop. The dc component can push the other transformer into saturation and draws inrush.
Three Winding Transformers Advantages
Why Delta winding prefer:
It is always desirable to have one delta connection winding in the three phase transformer as delta connected three phase winding will offer low impedance path for the three phase currents. Also the presence of delta connected three phase winding allows to circulate the current around the delta winding in the event of unbalance loading condition.
Although power system designers aims to avoid use of star/star transformer in power system but cases will arise when the phase shift between the star/delta and delta/star is not applicable such as in the power station supplying power to auxiliary system. Therefore it is common practice to have a star/star with delta tertiary three winding transformer supplying power to the plant auxiliary system.
B/H Curve of the magnetic material (core of the transformer) is not linear. Is a sinusoidal voltage (flux) is applied across the primary winding, the magnetizing current obtained will not be sinusoidal in nature and consists of fundamental component and several harmonics. Third harmonic components predominate with several other higher harmonic components. If there is no delta connected winding, or if the star connections of the transformers are not grounded, the line to earth capacitance currents supply system lines supply the harmonic components. If the harmonic components cannot flow in any one of these paths then, secondary voltage will be distorted.
Magnetostriction: Noise In Transformer:
Cooling fans and pumps employed for cooling the transformer is also acts as source of noise.
Methods to reduce Transformer noise:
Internal Faults in Transformer:
Transformer Parallel operation conditions
Parallel operation of transformers is required in cases such as the power to be delivered is more than the individual transformer rating. In such cases operating two or more transformers to facilitate the power flow is possible, but certain conditions to be followed while operating transformers in parallel condition
Conditions for parallel operation of Transformers:
Conditions 1,4 and 5 are absolutely essential and must be fulfilled, condition 2 must be satisfied to a close degree and condition 3 (X/R ratio) must be satisfied in order to have equal loading on the transformers.
When DC supply given to Transformer what happens ?
DC supply to Transformer:
A Transformer cannot be operated on the DC source or never connected to DC supply. If a rated dc voltage is applied to the primary of the transformer, the flux produced in the transformer core will not vary but remain constant in magnitude. So therefore no emf is induced in the secondary winding except during the moment of switching on the dc supply. As no induced emf is produced current cannot be delivered from the secondary side to the load.
Also the flux flowing through the iron core from primary winding to secondary winding not only links the secondary winding but also primary winding. Due to this flux linkage self induced emf is produced in the primary winding. This self induced emf in the primary winding will oppose the applied voltage and hence it acts as back emf. This back emf limits the primary current flowing through the primary winding in normal operating condition (similar like dc machine armature current).
When a dc supply is provided to the transformer primary no self induced emf will be generated (no back emf). Therefore heavy current will flow in the transformer primary winding which may result in burning down the transformer primary winding.
Token Ring At the start, a free Token is circulating on the ring, this is…
Two or more amplifiers can be connected in a cascaded arrangement with the output of…
A linear amplifier provides amplification of a signal without any distortion so that the output…
What is Rectifier? A rectifier is a device that simply converts alternating current (AC) into…
Types of Diodes: Small signal or Small current diode - These diodes assumes that the…
Ethernet Bus: This is a coax based Ethernet network where all machines are daisy chained…