A circuit element is an idealised mathematical model of a two-terminal electrical device that is completely characterised by its voltage-current relationship. Although ideal circuit elements are not “off-the-shelf” circuit components, their importance lies in the fact that they can be interconnected (on paper or on a computer) to approximate actual circuits that are composed of nonideal elements and assorted electrical components – thus allowing for the analysis of such circuits.
Circuit elements can be categorized as either active or passive.
Active Circuit Elements
Active circuit elements can deliver a non-zero average power indefinitely. There are four types of active circuit element, and all of them are termed an ideal source. They are:
Passive Circuit Elements
Passive circuit elements cannot deliver a non-zero average power indefinitely. Some passive elements are capable of storing energy, and therefore delivering power back into a circuit at some later time, but they cannot do so indefinitely.
There are three types of passive circuit element. They are:
Types of Circuits
The interconnection of two or more circuit elements forms an electrical network. If the network contains at least one closed path, it is also an electrical circuit. A network that contains at least one active element, i.e. an independent or dependent source, is an active network. A network that does not contain any active elements is a passive network.
Independent Sources
Independent sources are ideal circuit elements that possess a voltage or current value that is independent of the behaviour of the circuits to which they belong.
The Independent Voltage Source
An independent voltage source is characterised by a terminal voltage which is completely independent of the current through it. The representation of an independent voltage source is shown below:
If the value of the voltage source is constant, that is, does not change with time, then we can also represent it as an ideal battery:
Although a “real” battery is not ideal, there are many circumstances under which an ideal battery is a very good approximation.
In general, however, the voltage produced by an ideal voltage source will be a function of time. In this case we represent the voltage symbolically as v(t ) .
A few typical voltage waveforms are shown below. The waveforms in (a) and (b) are typical-looking amplitude modulation (AM) and frequency modulation (FM) signals, respectively. Both types of signals are used in consumer radio communications. The sinusoid shown in (c) has a wide variety of uses; for example, this is the shape of ordinary household voltage. A “pulse train”, such as that in (d), can be used to drive DC motors at a variable speed.
Since the voltage produced by a source is in general a function of time, then the most general representation of an ideal voltage source is as shown below:
The Independent Current Source
An independent current source establishes a current which is independent of the voltage across it. The representation of an independent current source is shown below:
In other words, an ideal current source is a device that, when connected to anything, will always push current ( is) out of terminal 1 and pull is into terminal 2
Since the current produced by a source is in general a function of time, then the most general representation of an ideal current source is as shown below:
Token Ring At the start, a free Token is circulating on the ring, this is…
Two or more amplifiers can be connected in a cascaded arrangement with the output of…
A linear amplifier provides amplification of a signal without any distortion so that the output…
What is Rectifier? A rectifier is a device that simply converts alternating current (AC) into…
Types of Diodes: Small signal or Small current diode - These diodes assumes that the…
Ethernet Bus: This is a coax based Ethernet network where all machines are daisy chained…